Fundamental High-Speed Limits in Single-Molecule, Single-Cell, and Nanoscale Force Spectroscopies
نویسندگان
چکیده
Force spectroscopy is enhancing our understanding of single-biomolecule, single-cell, and nanoscale mechanics. Force spectroscopy postulates the proportionality between the interaction force and the instantaneous probe deflection. By studying the probe dynamics, we demonstrate that the total force acting on the probe has three different components: the interaction, the hydrodynamic, and the inertial. The amplitudes of those components depend on the ratio between the resonant frequency and the frequency at which the data are measured. A force-distance curve provides a faithful measurement of the interaction force between two molecules when the inertial and hydrodynamic components are negligible. Otherwise, force spectroscopy measurements will underestimate the value of unbinding forces. Neglecting the above force components requires the use of frequency ratios in the 50-500 range. These ratios will limit the use of high-speed methods in force spectroscopy. The theory is supported by numerical simulations.
منابع مشابه
The study of single anticancer peptides interacting with HeLa cell membranes by single molecule force spectroscopy.
To determine the effects of biophysical parameters (e.g. charge, hydrophobicity, helicity) of peptides on the mechanism of anticancer activity, we applied a single molecule technique-force spectroscopy based on atomic force microscope (AFM)-to study the interaction force at the single molecule level. The activity of the peptide and analogs against HeLa cells exhibited a strong correlation with ...
متن کاملNanoengineering a single-molecule mechanical switch using DNA self-assembly.
The ability to manipulate and observe single biological molecules has led to both fundamental scientific discoveries and new methods in nanoscale engineering. A common challenge in many single-molecule experiments is reliably linking molecules to surfaces, and identifying their interactions. We have met this challenge by nanoengineering a novel DNA-based linker that behaves as a force-activated...
متن کاملA single-molecule force spectroscopy study of the interactions between lectins and carbohydrates on cancer and normal cells.
The interaction forces between carbohydrates and lectins were investigated by single-molecule force spectroscopy on both cancer and normal cells. The binding kinetics was also studied, which shows that the carbohydrate-lectin complex on cancer cells is less stable than that on normal cells.
متن کاملPredicting Force in Single Point Incremental Forming by Using Artificial Neural Network
In this study, an artificial neural network was used to predict the minimum force required to single point incremental forming (SPIF) of thin sheets of Aluminium AA3003-O and calamine brass Cu67Zn33 alloy. Accordingly, the parameters for processing, i.e., step depth, the feed rate of the tool, spindle speed, wall angle, thickness of metal sheets and type of material were selected as input and t...
متن کاملSingle-molecule dynamics of the DNA-EcoRII protein complexes revealed with high-speed atomic force microscopy.
The study of interactions of protein with DNA is important for gaining a fundamental understanding of how numerous biological processes occur, including recombination, transcription, repair, etc. In this study, we use the EcoRII restriction enzyme, which employs a three-site binding mechanism to catalyze cleavage of a single recognition site. Using high-speed atomic force microscopy (HS-AFM) to...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 10 شماره
صفحات -
تاریخ انتشار 2016